Pro- and anti-mitogenic actions of pituitary adenylate cyclase-activating polypeptide in developing cerebral cortex: potential mediation by developmental switch of PAC1 receptor mRNA isoforms.
نویسندگان
چکیده
During corticogenesis, pituitary adenylate cyclase-activating polypeptide (PACAP; ADCYAP1) may contribute to proliferation control by activating PAC1 receptors of neural precursors in the embryonic ventricular zone. PAC1 receptors, specifically the hop and short isoforms, couple differentially to and activate distinct pathways that produce pro- or anti-mitogenic actions. Previously, we found that PACAP was an anti-mitogenic signal from embryonic day 13.5 (E13.5) onward both in culture and in vivo and activated cAMP signaling through the short isoform. However, we now find that mice deficient in PACAP exhibited a decrease in the BrdU labeling index (LI) in E9.5 cortex, suggesting that PACAP normally promotes proliferation at this stage. To further define mechanisms, we established a novel culture model in which the viability of very early cortical precursors (E9.5 mouse and E10.5 rat) could be maintained. At this stage, we found that PACAP evoked intracellular calcium fluxes and increased phospho-PKC levels, as well as stimulated G1 cyclin mRNAs and proteins, S-phase entry, and proliferation without affecting cell survival. Significantly, expression of hop receptor isoform was 24-fold greater than the short isoform at E10.5, a ratio that was reversed at E14.5 when short expression was 15-fold greater and PACAP inhibited mitogenesis. Enhanced hop isoform expression, elicited by in vitro treatment of E10.5 precursors with retinoic acid, correlated with sustained pro-mitogenic action of PACAP beyond the developmental switch. Conversely, depletion of hop receptor using short-hairpin RNA abolished PACAP mitogenic stimulation at E10.5. These observations suggest that PACAP elicits temporally specific effects on cortical proliferation via developmentally regulated expression of specific receptor isoforms.
منابع مشابه
Development-related alternative splicing of PAC1 receptor: a key player in schizophrenia?
Alternative splicing is the process by which various combinations of exons are included in a mature mRNA, thus allowing a single gene to encode multiple protein isoforms with potentially different or even antagonistic properties. Proper mRNA splicing is absolutely crucial for nervous system development and its misregulation has been demonstrated in schizophrenia (Morikawa and Manabe, 2010). Sch...
متن کاملPituitary adenylate cyclase-activating polypeptide induces astrocyte differentiation of precursor cells from developing cerebral cortex.
Ciliary neurotrophic factor and bone morphogenetic proteins induce astrocytogenesis in the developing rat brain by stimulating STAT- and Smad-dependent signaling, respectively. We previously found that stimulation of the cAMP-dependent signaling pathway also triggers differentiation of cerebral cortical precursor cells into astrocytes, providing an additional mechanism to promote astrocyte diff...
متن کاملChronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats
Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeat...
متن کاملAlternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity
Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduc...
متن کاملPituitary adenylate cyclase-activating polypeptide receptors mediating insulin secretion in rodent pancreatic islets are coupled to adenylate cyclase but not to PLC.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a potentiator of glucose-induced insulin secretion. PACAP binds to a PACAP-specific receptor (PAC1) and to VPAC receptors (VPAC1 and VPAC2), which share high affinity for vasoactive intestinal polypeptide (VIP). In the present study, the molecular expression of PACAP receptor isoforms and the signaling pathways involved in the insuli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 9 شماره
صفحات -
تاریخ انتشار 2013